Two-Step Genetic Programming for Optimization of RNA Common-Structure

نویسندگان

  • Jin-Wu Nam
  • Je-Gun Joung
  • Y. S. Ahn
  • Byoung-Tak Zhang
چکیده

We present an algorithm for identifying putative non-coding RNA (ncRNA) using an RCSG (RNA Common-Structural Grammar) and show the effectiveness of the algorithm. The algorithm consists of two steps: structure learning step and sequence learning step. Both steps are based on genetic programming. Generally, genetic programming has been applied to learning programs automatically, reconstructing networks, and predicting protein secondary structures. In this study, we use genetic programming to optimize structural grammars. The structural grammars can be formulated as rules of tree structure including function variables. They can be learned by genetic programming. We have defined the rules on how structure definition grammars can be encoded into function trees. The performance of the algorithm is demonstrated by the results obtained from the experiments with RCSG of tRNA and 5S small RNA.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Application of Genetic Programming to Modeling and Prediction of Activity Coefficient Ratio of Electrolytes in Aqueous Electrolyte Solution Containing Amino Acids

Genetic programming (GP) is one of the computer algorithms in the family of evolutionary-computational methods, which have been shown to provide reliable solutions to complex optimization problems. The genetic programming under discussion in this work relies on tree-like building blocks, and thus supports process modeling with varying structure. In this paper the systems containing amino ac...

متن کامل

A zero one programming model for RNA structures with arclength ≥ 4

In this paper, we consider RNA structures with arc-length 4 . First, we represent these structures as matrix models and zero-one linearprogramming problems. Then, we obtain an optimal solution for this problemusing an implicit enumeration method. The optimal solution corresponds toan RNA structure with the maximum number of hydrogen bonds.

متن کامل

Multi-objective Pareto optimization of bone drilling process using NSGA II algorithm

Bone drilling process is one the most common processes in orthopedic surgeries and bone breakages treatment. It is also very frequent in dentistry and bone sampling operations. Bone is a complex material and the machining process itself is sensitive so bone drilling is one of the most important, common and sensitive processes in Biomedical Engineering field. Orthopedic surgeries can be improved...

متن کامل

A Mathematical Modeling for Plastic Analysis of Planar Frames by Linear Programming and Genetic Algorithm

In this paper, a mathematical modeling is developed for plastic analysis of planar frames. To this end, the researcher tried to design an optimization model in linear format in order to solve large scale samples. The computational result of CPU time requirement is shown for different samples to prove efficiency of this method for large scale models. The fundamental concept of this model is ob...

متن کامل

Using Genetic Algorithm in Solving Stochastic Programming for Multi-Objective Portfolio Selection in Tehran Stock Exchange

Investor decision making has always been affected by two factors: risk and returns. Considering risk, the investor expects an acceptable return on the investment decision horizon. Accordingly, defining goals and constraints for each investor can have unique prioritization. This paper develops several approaches to multi criteria portfolio optimization. The maximization of stock returns, the pow...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004